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Abstract

The history of magnetic circular dichroism (MCD) spectroscopy in the study of alkali metal/rare

gas (M/Rg) cryogenic systems is reviewed in the context of developing a better understanding of

alkali metal/hydrogen systems of current interest to the U.S. Air Force as enhanced-performance

cryogenic rocket propellants. A new theory for simulating the MCD spectra of M/Rg systems is

presented together with a careful discussion of the theory’s implicit and explicit approximations

and their implications. This theory uses a classical Monte Carlo (MC) simulation scheme to model

the perturbing effects of the Rg environment on the 2S → 2P MCD-active transition of the M

atom. The theory sets up the MC-MCD simulation as a 6 × 6 matrix eigenvalue/eigenvector

problem in the 2P manifold in which is included the effects of M-Rg interactions, metal atom spin-

orbit coupling in the 2P manifold, magnetic Zeeman perturbations of the 2S and 2P manifolds,

Boltzmann temperature factors, and electric dipole transition moment integrals for left circularly

polarized (LCP) and right circularly polarized (RCP) light. The theory may be applied to any

type of trapping site of the host M in the guest Rg matrix; a single atom substitutional metal atom

trapping site (one host Rg atom is replaced by one guest M atom) is modeled in this study for M

= Na and Rg = Ar. Two temperature factors are used in these simulations; a lattice temperature

to model the mobility of the Rg lattice and a magnetic temperature to model Boltzmann factors

in the 2S ground manifold. The 6 × 6 eigenvalue/eigenvector problem is solved for a number

of randomly generated and suitably averaged Rg configurations to yield the simulated MC-MCD

spectrum for the single substitutional Na/Ar system. The MC-MCD simulations of Na/Ar give the

characteristic triplet MCD spectrum with the correct Boltzmann temperature dependence. The

simulated MC-MCD spectrum correctly inverts when the direction of the applied magnetic field

is reversed. Addition of the LCP and RCP absorbances gives rise to a characteristic 2S → 2P

triplet absorption feature.
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I. INTRODUCTION

Alkali metal/rare gas solids (M/Rg solids) constitute an important class of model sys-

tems of interest to the U. S. Air Force in simulating the properties of enhanced-performance

cryogenic rocket propellants [1—4]. In particular, the alkali metal/rare gas (M/Rg) sys-

tems share many physical, chemical, and spectroscopic characteristics with M/hydrogen

systems, where in a potential rocket propulsion application, M is a high energy density

material (HEDM); e.g., a low mass alkali metal or Group 13 or 14 element [5, 6]. Boatz

and Fajardo recently modeled 2S → 2P electronic absorption spectra in M/Rg systems by

using quantum mechanical first-order degenerate perturbation theory in conjunction with a

classical Monte Carlo (MC) method to account statistically for the effects of the Rg per-

turbations on the 2S and 2P terms of the M/Rg systems [7]. Their simulations, while not
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completely quantitative, do recover many of the key attributes of the electronic absorption

spectra of these systems including the characteristic three-peaked or "triplet" absorption

band shape. Lawrence and Apkarian take a very similar approach in modeling the 2P terms

of halogen atoms doped in cryrogenic matrices (X/Rg) [8]. Boatz and Fajardo make the

reasonable assumption that spin-orbit coupling represents a small perturbation of the 2P

term compared to the Rg perturbation, at least for the lighter alkali metals of interest to

them as HEDM rocket propellant dopants, and on this basis justify the exclusion of 2P

spin-orbit coupling terms in their model. The Boatz and Fajardo first-order perturbation

matrix for the 2P term is, therefore a 3 × 3 matrix whose matrix elements are defined with
respect to a suitable zeroth-order orbital p basis in the angular momentum representation

(|n l mli = |n 1 1i,|n 1 0i,|n 1 −1i). Spin is not considered. Lawrence and Apkarian do
include a 2P spin-orbit term for the halogen in their treatment. They argue convincingly

that the large halogen 2P spin-orbit coupling interaction is not greatly affected by the matrix

environment, i.e., the use of the atomic spin-orbit coupling constant of the halogen in the

formalism represents a good approximation. The Lawrence and Apkarian 2P perturbation

matrix is a 6 × 6 matrix whose individual matrix elements are defined with respect to a

suitable zeroth-order Cartesian p basis with spin {|n l e s msi =
¯̄
n l x 1

2
1
2

®
,
¯̄
n l y 1

2
1
2

®
,¯̄

n l z 1
2
1
2

®
,
¯̄
n l x 1

2
−1
2

®
,
¯̄
n l y 1

2
−1
2

®
,
¯̄
n l z 1

2
−1
2

®
}.

Magnetic circular dichroism (MCD) spectroscopy, which measures the differential ab-

sorption of left circularly polarized (LCP) light vs. right circularly polarized (RCP) light

in a sample placed in a magnetic field aligned parallel to the propagation direction of the

light, has a long and venerable history of providing insights to the nature of the chemical

and physical environment surrounding the MCD-active chromophore [9]. In particular, the

MCD-active 2S → 2P electronic transitions of alkali halide F centers [10—14] and M/Rg

systems [15—18] have attracted considerable experimental and theoretical attention over the

years. The usual approach is to extract parameters such as the g value, the spin-orbit

coupling constant, and linear vibrational coupling constants from a moment analysis of the

experimental MCD spectrum (or spectra) [9, 11]. Only a few full MCD spectral simulations

exist in the literature. These simulations of 2S → 2P MCD spectra rely upon dynamic

Jahn-Teller models in which an a priori choice is made as to which specific interaction vi-

brational modes will act to lift the degeneracy of the 2P term [19, 20]. This simulation

approach is of limited value in modeling the MCD spectra of M atoms trapped in novel

104

terrill
This page is Distribution A: Approved for public release, distribution unlimited



and heretofore unobserved sites in Rg matrices for which specific site geometries and lattice

mode types are as yet unknown. A MC approach for handling Rg perturbations in MCD

simulations of M/Rg systems naturally suggests itself. A full development of the theory

of Monte Carlo-MCD (MC-MCD) simulations of 2S → 2P MCD spectra is presented in

the sections that follow. The MC-MCD simulation method is a first order degenerate per-

turbation method that straightforwardly extends the MC absorption- simulation methods

of Boatz and Fajardo [7] and Lawrence and Apkarian [8] by (1) including both spin-orbit

and Zeeman perturbations in the Hamiltonian and (2) separately treating the 2S → 2P

transitions associated with LCP and RCP light. The MC-MCD perturbation matrix for

the 2P term is a 6 × 6 matrix whose individual matrix elements are expressed in terms of
a suitable uncoupled angular momentum p basis set with spin {|n lml smsi =

¯̄
n 1 1 1

2
1
2

®
,¯̄

n 1 0 1
2
1
2

®
,
¯̄
n 1 −1 1

2
1
2

®
,
¯̄
n 1 1 1

2
−1
2

®
,
¯̄
n 1 0 1

2
−1
2

®
,
¯̄
n 1 −1 1

2
−1
2

®
}.

II. THEORY

As noted above, the theory of MC-MCD spectroscopy of 2S → 2P excitations in M/Rg

systems represents an extension of the formalism for MC-absorption spectroscopy developed

by Boatz and Fajardo [7] (for M/Rg systems) and Lawrence and Apkarian [8] (for X/Rg

systems). Key aspects of both the Boatz and Fajardo and Lawrence and Apkarian notational

schemes are adopted in the following formal development.

A. Total Hamiltonian and zeroth-order eigenvectors/eigenvalues

The total Hamiltonian for an alkali metal M atom imbedded in a cryogenic rare gas

matrix comprised of N Rg atoms in the presence of an applied external magnetic field is

given by

H = HM(r) +Hint(r;R1,R2, ...,RN), (1)

where

HM(r) = TM(r) + VM(r) (2)

is the one-electron Hamiltonian for the optically active electron onM at position r, comprised

of a kinetic energy component TM(r) and an electrostatic potential energy component VM(r).
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The potential VM(r) is the potential experienced by the optically active electron in the free

gas-phase M atom in the absence of spin-orbit coupling or an external magnetic field.

To describe completely the 2S ground term of M, two zeroth-order eigenvectors

{
¯̄
n 0 0 1

2
ms

®
; ms = 1/2. -1/2) are needed; for the 2P excited term, six zeroth-order eigen-

vectors {|n lml smsi; ml. = 1, 0, -1, ms = 1/2, -1/2} are required. An uncoupled angular

momentum representation {|n lml smsi} for the zeroth-order eigenvectors is chosen, with-
out loss of generality, because of the transparent way in which MCD selection rules may be

expressed in terms of this representation (vide infra). However, it is equally valid to use

zeroth-order eigenvector sets expressed in the coupled angular momentum representation

{|n l s j mi or the Cartesian representation {|n l e smsi} (e = x, y, z for l = 1) since the

uncoupled, coupled, and Cartesian representations are mutually related by unitary trans-

formations [21]. In this treatment, the interaction Hamiltonian is comprised of four terms,

each of which depends upon the nuclear position vectors {Rk}of all of the N Rg atoms in the

matrix; a metal-rare gas interaction term, a rare gas-rare gas interaction term, a spin-orbit

term, and a Zeeman term,

Hint(r;R1,R2, ...,RN) = VM−Rg(r;R1,R2, ...,RN) + VRg−Rg(r;R1,R2, ...,RN) (3)

+Hso(r;R1,R2, ...,RN) +HZeeman(r;R1,R2, ...,RN)

The M nucleus is taken to be the origin of the coordinate system with respect to which r and

the {Rk} are defined. In this treatment, it is assumed, following Lawrence and Apkarian,

that M-Rg interactions do not affect Rg-Rg interactions [8]; no modifications have been

made to the Rg-Rg potentials to account for perturbations arising from the presence of the

M atom.

B. The Rg-Rg and M/Rg potentials

The Rg-Rg interaction potential in Eq. 3 can be approximated as a simple sum over the

appropriate S symmetry Rg-Rg diatomic potentials

VRg−Rg(R1,R2, ...,RN) =
X

m=1,N

X
m<k

VRg−Rg(|Rm −Rk|) = URg−Rg (4)

following the notation of Boatz and Fajardo [7]. It should be noted that URg−Rg has the

same value for both the 2S and 2P terms at this level of approximation.
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The M-Rg potential, which in general exhibits a complicated dependence upon the Rg

positions (Rk), is expressed in terms of a Legendre polynomial expansion as

VM−Rg(r;R1,R2, ...,RN) =
X
k=1,N

X
L=0,infinity

VL(r,Rk)PL(θ, φ; θk, φk) (5)

where r = (r, θ, φ) is the optically active electron position vector, Rk = (Rk, θk, φk) is the

position vector for Rg nucleus k. VL(r,Rk) is the radial potential function of order L, and

PL(θ, φ; θk, φk) is the Legendre polynomial of order L

PL(θ, φ; θk, φk) = 4π(2L+ 1)
−1 X

M=−L,L
YLM(θ, φ)Y

∗
LM(θk, φk) (6)

and the YLM are spherical harmonic functions expressed in the standard Condon and Shortley

phase convention [22]. Eq. 6 is an expression of one of the possible forms of the spherical

harmonic addition theorem [21].

C. Spin-orbit coupling operator

The spin-orbit coupling operator for the optically active electron may be written, using

the standard defining equation for the spin-orbit interaction [23], in terms of the potential

gradient of the free M and M-Rg interaction potentials

Hso(r;R1,R2, ...,RN) = Hso,M(r) +HSO,M−Rg(r;R1,R2, ...,RN)

= {(2me2c2r)−1∇[VM(r) + VM−Rg(r;R1,R2, ...,RN)]× p} · S
= [ξM(r) + ξM−Rg(r)]L · S+ [(2me2c2r)−1 (7)

×∇{
X
k=1,N

X
L=1,infinity

VL(r,Rk)PL(θ, φ; θk, φk)} × p] · S

where p and S are, respectively, the linear momentum and spin operators for the optically

active electron, L = r×p is the angular momentum operator for the optically active electron
and

ξM(r) = (2me2c2r)−1d[VM(r)]/dr (8)

is the standard spin-orbit coupling operator for the free M atom. The M-Rg interaction

potential of Eq. 5 can be broken up into spherical and non-spherical components

VM−Rg(r;R1,R2, ...,RN) =
X
k=1,N

V0(r,Rk) +
X
k=1,N

X
L=1,infinity

VL(r,Rk)PL(θ, φ; θk, φk). (9)
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In the form of the theory currently in use for MC-MCD simulations, it is assumed that

the gradient expression in Eq. 7 is small and can be neglected; i.e., no L > 0 terms are

assumed to contribute to the spin-orbit coupling interaction. The total spin-orbit coupling

operator of the M/Rg system in the spherical approximation is thus given by

Hso(r) = Hso,M(r) +HSO,M−Rg(r) = [ξM(r) + ξM−Rg(r)]L · S =ξ(r,L · S) (10)

where the dependence on the Rg position vectors {Rk}, while present is not explicitly shown

in the interest of preserving a compact notation in the final form of the equations used.

No spin-orbit coupling is possible when the optically active electron is in the 2S ground

state manifold where l = 0. In the 2P excited state manifold where l = 1, the spin-orbit

coupling constant is expressed formally as the sum of the radial expectation values of the

spherically symmetric M and M-Rg spin-orbit coupling operators

ζnl = hn l| ξ(r) |n li = hn l| ξM(r) |n li+ hn l| ξM−Rg(r) |n li = ζM + ζM−RG (11)

If the radial eigenvector |n li is the free atom P state atomic radial eigenvector for M, or if

|n li closely approximates this eigenvector, then ζM is the free alkali atom spin-orbit coupling
constant and ζM−RG is the spherical perturbation to the spin-orbit coupling constant induced

in M by the Rg matrix environment. Eq. 11 provides an insightful context for discussing the

possibilities of (1) spin-orbit coupling constant sign reversal or (2) reduction of the magnitude

of a spin-orbit coupling constant (partial quenching, in a 2P M-Rg system. For any given

alkali metal M the free atom 2P spin-orbit coupling constant is positive; i.e., ζM > 0. Thus,

for a 2P spin-orbit coupling constant ζnl to be negative in a M-Rg system, the M-Rg spin

orbit contribution must be negative and larger in magnitude than the free M atom spin-

orbit coupling constant. i.e., ζM−RG < 0 and |ζM−RG| > ζM The conditions for the partial

quenching case, where ζnl is still positive but smaller than ζM are: ζM−RG < 0 and |ζM−RG| <
ζM . In the actual MC-MCD simulations, ζnl is introduced as an adjustable parameter. The

two cases may be explored in the MC-MCD simulations by making appropriate choices for

ζnl with respect to the known positive ζM of the alkali metal M atom of interest.

D. Zeeman Perturbation

The Zeeman perturbation operator is given by

HZeeman(r;R1,R2, ...,RN) = µBBlocal(L+ 2S) (12)
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where µB is the Bohr magneton, L and S are the orbital and spin angular momentum

operators for the optically active electron, andBlocal is the magnetic field locally experienced

by the optically active electron as a result of the application of an external magnetic field

B to the M/Rg system. Both the magnitude and the direction of the local magnetic field

vector are influenced by the positions of the Rg atoms and by the nature of the electronic

state of the optically active electron (i.e., 2S or 2P ). The relationship between the external

magnetic field and the local magnetic field thus may be expressed as

Blocal = Blocal(R1,R2, ...,RN) = [1− σnl(R1,R2, ...,RN)]B (13)

where σnl(R1,R2, ...,RN) is a 3 × 3 shielding tensor whose individual components depend
upon both the nature of the electronic state being shielded and the positions of the Rg atoms

in the matrix. In actual MC-MCD simulations, it is assumed that the local magnetic field

is aligned along the laboratory z axis

Blocal = Blocalez (14)

which gives

HZeeman = µBB (1− σnl) (Lz + 2Sz) (15)

Different values of Blocal can be chosen, if desired, to model the effects of slightly different
2S and 2P shielding constants σn0 and σn1. Changes in the direction of Blocal away from the

z axis arising from the tensor character of σnl can be modeled by preserving the laboratory

z axis orientation of the Zeeman perturbation, which is very desirable from the standpoint

of matrix element evaluation, and rotating the Rg position vector set through an arbitrary

unitary rotation transformation U{Rk} = {R0
k}. In any event, it is expected that differences

betweenB andBlocal will be comparatively small for closed shell Rg atoms in their ground 1S

electronic states. Certainly within the chosen MC-MCD simulation restrictions mentioned

earlier of neglecting polarization effects and the higher excited states of the Rg atoms, B

will not differ much from Blocal.

E. Diagonalization of the full Hamiltonian matrix in the 2S and 2P manifolds

An implementation of degenerate first-order perturbation theory is required to arrive at

approximate 2S and 2P eigenvalues and eigenvectors of the full M/Rg Hamiltonian given in
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Eq. 1. These eigenvalues and eigenvectors contain the effects of the various terms in the

interaction Hamiltonian Eq. 3. First-order perturbation theory gives eigenvalues that are

correct through first order. The associated eigenvectors are those particular zeroth-order

eigenvectors, expressed as orthonormal linear combinations of the zeroth-order eigenvector

set {|n lml smsi},

Ψi = |n l ii =
X

ml=−l,l

X
ms=−1/2,1/2

Cnlmlsms

i |n lml smsi , (16)

hn l i0|n l ii = δ(i0, i), (17)

that diagonalize the 2 × 2 (2S manifold) or 6 × 6 (2P manifold) matrix formed by sand-

wiching the full Hamiltonian, Eq. 1, within the same uncoupled zeroth-order eigenvector set

{|n lml smsi}; i.e.,

hn0l0m0
l s
0m0

s|H|n lml smsi = hn0l0m0
l s
0m0

s|HM |n lml smsi+ hn0l0m0
l s
0m0

s|Hint|n lml smsi .
(18)

Both the first-order eigenvalues and the associated zeroth-order eigenvectors are needed

for MC-MCD simulations. Since the first matrix element on the right side of Eq. 18 is the

zeroth-order matrix element of the free M Hamiltonian, it is automatically diagonal in either

the original zeroth-order basis { |nlmlsmsi }

hn0l0m0
l s
0m0

s|HM |n lml smsi = εnlδ(n
0, n)δ(l0, l)δ(m0

l,ml)δ(s
0, s)δ(m0

s,ms) (19)

or the new zeroth-order basis {|n lii}

hn l i0|HM |n l ii = εnlδ(n
0, n)δ(l0, l)δ(i0, i). (20)

Within the 2S manifold the interaction matrix on the right side of Eq. 18 also is diagonal,

thus

Ψi(
2S) = |n 0 ii =

X
ms=−1/2,1/2

Cn00ms
i

¯̄̄̄
n 0 0

1

2
ms

À
(21)

which reduces to

Ψ1(
2S) =

¯̄̄̄
n 0 0

1

2

1

2

À
, (22a)

Ψ2(
2S) =

¯̄̄̄
n 0 0

1

2
−1
2

À
. (22b)
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The i index is mapped onto the ms index one-to-one in this specific case. The final expres-

sions for the 2S eigenvalues, correct through first order, are obtained by collecting together

the matrix elements previously derived for the Rg-Rg, M-Rg, and Zeeman perturbations:

Ei(
2S) = εn0(

2S) +En0i(
2S)

= εn0(
2S) + URg−Rg(2S) + UM−Rg(2S) + UZeeman(

2S)

= εn0(
2S) +

X
m=1,N

X
m<k

VRg−Rg,XΣ(|Rm −Rk|) (23)

+
X

m=1,N

X
m<k

VM−Rg,XΣ(Rk) + µBBlocal(2ms).

In Eq. 23 the eigenvalue convention of Boatz and Fajardo [7] is adopted: Ei is an eigenvalue

of a specific 2S state Ψi correct through first order, εn0 is the zeroth order 2S eigenvalue

for the optically active electron of the free M atom, and En0i is the first-order eigenvalue

correction term arising from the interaction Hamiltonian.

To obtain 2P final state eigenvalues correct through first order

Ef(
2P ) = εn1(

2P ) +En1f(
2P ) (24)

the first-order eigenvalue set (En1f(2P ); f = 1,6) must be calculated by diagonalizing the 6 ×
6 2P interaction matrix in Eq. 18. The individual matrix elements of this interaction matrix,

shown below in Table 1, are obtained by collecting together the matrix elements previously

derived for the 2P Rg-Rg, M-Rg, spin-orbit, and Zeeman perturbations. It should be noted

that the URg−Rg and the hV0iM−Rg perturbations are diagonal perturbations in this 6 × 6

matrix and can be separated from the 6 × 6 matrix eigenvalue problem as illustrated by

Boatz and Fajardo in their Eqs. (6) and (8) [7]. The associated final state 2P eigenvectors

that diagonalize this matrix, are

Ψf(
2P ) = |n 1 fi =

X
m1=−1,1

X
ms=−1/2,1/2

C
n1m1

1
2
ms

f

¯̄̄̄
n 1m1

1

2
ms

À
, (25)

where f = 1, 6 and

hn 1 f 0|n 1 fi = δ(f 0, f). (26)
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F. 2S → 2P transition energies and transition moment integrals for M/Rg MCD

spectroscopy

The combined effects of the Rg-Rg, M-Rg, spin-orbit, and Zeeman perturbations on the

optically active electron of a M/Rg system act to split the ground 2S manifold into two

energetically distinct states {Ψi; i = 1, 2} and the excited 2P manifold into six energetically

distinct states {Ψf ; f = 1, 6}. The specific characteristics of the 2S and 2P eigenval-

ues and their associated eigenvectors are dependent upon the particular Rg configuration

{R1,R2, ...,RN} within which the problem is solved. Thus, for a given Rg configuration

{R1,R2, ...,RN} and magnitude of the magnetic field, up to 12 energetically and optically

distinct transitions may be identified within the manifold-to-manifold 2S → 2P transition

of the M/Rg system. The transition energies of these 12 2S → 2P transitions are given as

hνfi = Ef(
2P )−Ei(

2S) (27)

where i = 1, 2 and f = 1, 6. The Rg-Rg interaction energy terms cancel in Eq. 27 since

URg−Rg(2P ) = URg−Rg(2S) = URg−Rg.

Electronic transitions involving the optically active electron of a M/Rg system are well

described as electric dipole transitions. In MCD spectroscopy, each of the 12 transitions may

be induced to a greater or lesser extent by either LCP or RCP light interacting with the

M/Rg system in the electric dipole limit and tuned to the particular transition energy hνfi.

Thus, both LCP and RCP electric dipole transition moment integrals must be computed for

each of the 12 possible combinations of initial and final states, i.e., 24 transition moment

integrals, 12 for LCP light and 12 for RCP light, are needed to describe the MCD spectrum

of a 2S → 2P transition in M/Rg system in a particular Rg configuration {R1,R2, ...,RN};

i.e.,


Ψf(

2P )|OLCP |Ψi(
2S)
®

(28a)
Ψf(

2P )|ORCP |Ψi(
2S)
®

(28b)

where i = 1, 2 and f = 1, 6. OLCP and ORCP are the electric dipole transition operators

for LCP and RCP light in Eqs. 28a and 28b. The electric dipole moment operator m

of the M/Rg system is, to a very good initial approximation, determined by the position

r = (x, y, z) and charge −e of the optically active electron. The Rg atoms are electrically
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neutral and their contributions to the dipole moment can be neglected if polarization effects

are assumed to be small. The M+ core is positioned at the origin of the chosen coordinate

system and thus does not contribute to the expression for the dipole moment at this level

of approximation. i.e.,

m =
X
i

qiri = −er+ e0 = −e(xex + yey + zez) + e(0ex + 0ey + 0ez)

= −e(xex + yey + zez). (29)

However, the optically active electron at position r will induce a slight polarization in

the M+ core and the Rg matrix. This polarization can be represented as a small negative

electrostatic image charge −q0 at −r. Thus, polarization effectively reduces the charge of
the optically active electron to

−e0 = −e+ q0 (30)

where |− e0| < |− e|. and the dipole moment operator of the M/Rg system becomes

m = −e0r = −e0(xex + yey + zez). (31)

While it can be argued that the image charge −q0 (and hence −e0) is not, strictly speaking,
a constant, but will exhibit both a radial dependence (i.e., different q0 for small r vs. large r)

and angular dependence arising from the specific positions of the Rg atoms (R1,R2, ...,RN)

in the M/Rg system, these effects are neglected at this level of the theory. Within the Piepho

and Schatz unit vector conventions for LCP and RCP light [9]

πLCP = 2
−1/2(ex − iey) (32a)

πRCP = 2
−1/2(ex + iey) (32b)

the LCP and RCP electric dipole moment operators for the M/Rg system become

OLCP =m · π∗LCP = −e02−1/2(x+ iy) = e0(4π/3)1/2Y11(θ, φ)r, (33a)

ORCP =m · π∗RCP = −e02−1/2(x− iy) = −e0(4π/3)1/2Y1−1(θ, φ)r. (33b)

Since each of the Ψi(
2S) and Ψf(

2P ) states is expressed in terms of the uncoupled zeroth-

order angular momentum eigenvector set {|nlmlsmsi} (see Eqs. 16 and 25), the specific form
of the transition moment integrals given in Eqs. 33a and 33b may be the determined by
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evaluating integrals

hn l0m0
l s
0m0

s|OLCP |nlml smsi = hnl0m0
l1/2m

0
s|OLCP |n001/2msi = fδ(m0

l, 1)δ(m
0
s,ms),

(34a)

hn l0m0
l s
0m0

s|ORCP |nlmlsmsi = hnl0m0
l1/2m

0
s|ORCP |n001/2msi = −fδ(m0

l,−1)δ(m0
s,ms)

(34b)

where

fLCP = f = (e0[4π/3]1/2) hn1|r|n0i hY11|Y11|Y00i = (e0[3]−1/2) hn1|r|n0i (35a)

fRCP = −f = (−e0[4π/3]1/2) hn1|r|n0i hY1−1|Y1−1|Y00i = (e0[3]−1/2) hn1|r|n0i (35b)

Eqs. 34a and 35a express the fact that an LCP electric dipole transition acts on the orbital

angular momentum component of the uncoupled wave function, increasing both l and ml

by one unit while leaving s and ms unchanged. The corresponding RCP electric dipole

transition described in Eqs. 34b and 35b also acts on the orbital angular momentum in the

uncoupled wave function, increasing l by one unit and decreasing ml by one unit. In Eqs.

35a and 35b f is the magnitude of the evaluated transition moment integral. Note that

the value of f is the same for all allowed transitions. By combining the transition moment

integral expressions in Eqs. 28, 34, and 35 with the appropriate expressions for Ψi(
2S) and

Ψf(
2P ) in the uncoupled basis as given in Eqs. 16,. 17, and 25, final expressions for the

contribution to the MCD spectrum by the transition i→ f at energy hνfi can be written:

∆A0(vfi) = ALCP (νfi)−ARCP (νfi)

= α{| Ψf(
2P )|OLCP |Ψi(

2S)
® |2 − | Ψf(

2P )|ORCP |Ψi(
2S)
® |2}

= αf2{|Cn1,ml=1,ms

f |2 − |Cn1,ml=−1,ms

f |2)× [1 + (e−2µBB/kT − 1)δ(ms, 1/2)] (36)

where α is a numerical constant that relates the squared transition moment integrals to the

absorbances and the initial state index i is associated withms = −1/2 or 1/2 in the 2S mani-
fold. The MCD spectral amplitude at energy hνfi for the Rg configuration {R1,R2, ...,RN}

is seen to be related to differences of squares of selected 2P eigenvector coefficients com-

puted for that configuration. The term in square brackets on the right side of Eq. 36 is a

Boltzmann factor for the 2S manifold. The Zeeman perturbation splits the energies of the

ms = −1/2 and 1/2 states of the 2S manifold by a factor of 2µBB. The ms = −1/2 and
1/2 states will, therefore, have different thermal populations. This must be accounted for

in computing the various contributions to the MCD spectrum.
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III. MONTE CARLO SIMULATION OF THE MCD SPECTRUM

The full MCD spectrum for a 2S → 2P transition in a M/Rg system in a specific Rg

configuration {R1,R2, ...,RN} is, therefore, a "stick MCD spectrum" consisting of 12 lines,

appropriately placed on the x (energy) axis at transition energies hνfi, whose magnitudes

and directions (+ or -) on the y (∆A0) axis are determined by computing Eq. 36 for all

possible choices of i and f . To simulate a real MCD spectrum, many stick MCD spectra,

each arising from a different Rg configuration, are averaged together using a simple binning

(histogram) technique based upon the original Metropolis et al. algorithm [24] exactly as

implemented by Boatz and Fajardo for the case of electronic absorption spectroscopy [7]. A

MC-MCD simulation begins by choosing an initial Rg configuration {R1,R2, ...,RN}initial,

typically , representing an idealized trapping site (e.g., a single substitutional site with Oh

symmetry). The MC energy optimization scheme operates in the 2S ground state manifold.

At this stage, the very small Zeeman perturbation of the 2S manifold is neglected. MCD stick

spectra arising frommore favorable configurations are weighted more heavily in the averaging

process than those arising from the less favorable configurations. In actual practice, the LCP

and RCP contributions to the MCD spectrum appearing in Eq. 36 are accumulated and

stored separately. This allows the electronic absorption spectrum to be recovered from the

MC-MCD simulation as [9]

A0 = A =
1

2
[A0LCP +A0RCP ]. (37)

Eq. 37 expresses the fact that the electronic absorption spectra of M/Rg systems are essen-

tially unaffected by the application of an external magnetic field.

A. Orientational averaging in MC-MCD simulations

In an MCD experiment, the propagation direction of the light, which is always parallel

to the B vector, rigorously defines the laboratory frame z axis. The laboratory frame x and

y axes are set parallel to the sapphire deposition window and perpendicular to B with the

origin at the M nucleus. All Rg positions, eigenvectors, and selection rules are described with

respect to this laboratory frame. To model the effects of arbitrary Rg lattice orientation

relative to the laboratory frame, the 6 × 6 2P matrix listed in Table 1 is separated into
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M/Rg and spin-orbit + Zeeman matrices

[M/Rg + SO + Zeeman] = [M/Rg] + [SO + Zeeman]. (38)

Arbitrary orientations of the Rg matrix relative to the laboratory frame can be modeled by

re-writing Eq. 38 as

[M/Rg + SO + Zeeman] = [U ][M/Rg][U ]−1 + [SO + Zeeman] (39)

where U is an arbitrary randomly generated unitary rotation matrix (e.g., an Eulerian

rotation matrix). The MC-MCD simulation process is carried out as before using Eq. 39

rather than Eq. 38.

B. Lattice temperature and magnetic temperature in MC MCD simulations

Temperature effects appear in two distinct places in MC-MCD simulations. A lattice

temperature must be specified for the MC simulation process. It may be argued that a

proper representation of quantum mechanical zero point vibrational motions of the M/Rg

lattice at temperature T requires the classical MC simulation to be carried out at a classical

lattice temperature T 0 > T [8]. However, a temperature for the Boltzmann factor of the

Zeeman-split 2S term also must be included. This magnetic temperature, Tmag, always

should be the actual system temperature T (Tmag = T ). The MC-MCD simulation code

has the option of specifying separate values for the lattice temperature T 0 and the magnetic

temperature Tmag. Lawrence and Apkarian discuss the relationship between T 0 and T in

classical MC simulations of doped Rg systems [8]. In practice T 0 is calibrated to T by

comparing the Rg MC equilibrium lattice spacing (for first and second nearest neighbors)

with the experimentally measured values [25]. For Ar at 10 K, the first nearest neighbor

analysis predicts a lattice temperature of 31K, while the second nearest neighbor analysis

predicts a slightly lower lattice temperature of 27K. Consequently a simulation lattice

temperature in the vicinity of 30K represents the best modeling of the quantum zero point

vibrations of the Ar lattice. The Na/Ar system at a magnetic temperature, Tmag = 10K, a

Na 2P spin-orbit parameter of 17 cm−1 (the value for unperturbed atomic Na) is illustrated

in Figures 1a and 1b in which are presented the simulated absorption and MCD spectra,

respectively, for three different choices of lattice temperature, T 0 = 10K, 30K and 45K.
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While the characteristic 3-peaked "triplet" absorption feature and the corresponding down,

down, up MCD triplet feature are preserved for all three choices of T 0; the spectral breadth

increases as T 0 increases, improving agreement between simulated and experimental spectra.

The difference in peak height is due to the fact that the total area under the absorption

curve is normalized to 1.0; broader peaks will be shorter.

C. Other important properties of MC-MCD simulations

For the single substitutional site in the Na/Ar system, absorption and MC-MCD simu-

lations correctly reproduce other observed properties of experimental absorption and MCD

spectra M/Rg systems. For example, the observed insensitivity of the experimental 2S → 2P

M/Rg triplet absorption feature to the magnetic field strength and Tmag is faithfully repro-

duced in the MC-MCD simulation as shown in Figure 2. Reversal of the magnetic field

direction (B = Bez changed to B = −Bez) in an MCD experiment has the effect of invert-
ing the MCD spectrum. If the normal MCD spectrum follows a down-down-up pattern,

the MCD spectrum with the reversed magnetic field will be the mirror image of the original

spectrum with an up-up-down pattern. In Figure 3, it is seen that the MC-MCD simula-

tions of Na/Ar correctly gives an inverted spectrum when B is replaced with −B. These

successes suggest the MC-MCD simulation embodies much of the essential physics of the

Na/Ar system and its interaction with external magnetic fields, the perturbing effects of

the Rg matrix and electromagnetic radiation. Overall, the MC-MCD simulated Na/Ar

absorption and MCD spectra show good qualitative agreement with experimental Na/Ar

spectra.
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Fig. 1. Comparison of the temperature effects in the (a) absorption and (b) MCD spectra

for the case of SO = 17cm−1, B = 1.0T , magnetic temperature, Tm = 10K, at simulation

temperatures of 10, 30, and 45 K

Fig. 2. Absorption spectra with (a) normal and (b) reversed B-fields. 1-atom vacancy,

SO = 17 cm−1, and Tmag = 6, 8, 10 K. The magnitudes of the B-fields are 1.0 T.

Fig. 3. MCD spectra with (a) normal magnetic field alignment and (b) reversed magnetic

field alignment. 1-atom vacancy, SO = 17 cm−1, and Tmag = 10 K. The magnitudes of the

B-fields are 1.0 T.
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Simulated Absorption Spectra
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Fig. 1a

Simulated MCD Spectra
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Normal Orientation Magnetic Field

Energy (cm-1)

17000 17500 18000 18500 19000

A
bs

or
ba

nc
e

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

0.0018 Energy v Abs. (6K) 
Energy v Abs. (8K) 
Energy v Abs. (10K) 

Fig. 2a

Reversed Magnetic Field
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